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Abstract. The transverse spin fluctuations are introduced to the density functional theory for supercon-
ductors (SCDFT). Paramagnons are treated within the random phase approximation and assumed to be
the same for the normal and superconducting state. The effect of spin fluctuations on Tc is studied for a
few simple metals at ambient pressure and niobium at several pressures up to 80 GPa.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) – 74.62.-c
Transition temperature variations – 74.70.Ad Metals; alloys and binary compounds (including A15, MgB2,
etc.) – 71.70.Gm Exchange interactions

1 Introduction

Since the discovery of superconductivity many theories
have been born to explain this phenomenon and calcu-
late observables. First papers about the role of the spin
fluctuations by Doniach and Engelsberg [1] and Izuyama
et al. [2] were published in sixties. Till today, fluctuations
have been introduced to the many-body and phenomeno-
logical models and a very popular semiempirical theory
proposed by Eliashberg [3].

The goal of this work is to include the spin fluctu-
ations into the density functional theory for supercon-
ductors which, in principle, enables to calculate all ma-
terial properties, also in the superconducting state, from
first principles. The framework of the SCDFT was set up
by Oliveira, Gross and Kohn [4] in 1988. Recently, the
SCDFT gap equation has been solved numerically for sim-
ple metals [5,6] and MgB2 [7].

As for the critical temperatures, it is known for a
long time, that the spin fluctuations decrease consider-
ably Tc of some superconductors [8,9]. In our previous
work for niobium under pressure [10], we solved the gap
equation of the Eliashberg theory [3] with and without
the spin fluctuations and the SCDFT gap equation only
with the Coulomb and phonon interactions. We found that
the effect of paramagnons decreased Tc obtained from the
Eliashberg theory by 3–4 K, however, an approximate
treatment of the Coulomb interactions by a simple con-
stant, µ∗, led to a large disagreement of the theoretical
results with the experimental data [11]. In contrast to the
Eliashberg theory, the SCDFT scheme is parameter free,
but the critical temperature calculated without the spin
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fluctuations for Nb at ambient pressure [10] was about
3.7 K higher than the experimental Tc.

In this work, we follow the derivations of the SCDFT
gap equation given in a number of Ph.D. theses1 [12–14],
and we include the spin fluctuations. The paramagnon
spectral function is calculated within the random phase
approximation (RPA) with the assumption of the homo-
geneous electron gas, similarly to the work by Berk and
Schrieffer [8]. We solve the obtained gap equation for a few
simple metals and update our previous results for niobium
under pressure. The estimate of the paramagnon spectral
function from the homogeneous gas approximation, made
in this paper, is very crude especially for materials with
the Fermi nesting. Netherveless, in the literature, it is very
common to correct in the same way the Eliashberg equa-
tion for the effect of the spin fluctuations. Fully ab initio
calculation of this quantity runs out of the scope of this
work, but should be performed in the future.

In the following sections, we introduce the SCDFT gap
equation and the construction of the exchange-correlation
functional, Fxc, by collecting the most important build-
ing blocks of the theory given by its authors [4] and
first developers [12–16]. These sections are: 2 “SCDFT
gap equation”, 3 “Exchange-correlation functional”, and
4 “Coulomb interaction and phonons in Fxc”. Above sec-
tions are written using the notation according to Parks
[17,18] and Vonsovsky [19]. This notation is at some
points, such as Nambu Green’s function and the selfen-
ergy, different than the notation previously used for the
SCDFT [12–14]. We introduce the spin fluctuations in Sec-
tions: 5 “Paramagnons in Fxc” and 6 “Gap equation with
paramagnons and implementation details”. We report ob-

1 Available at URL: www.physik.fu-berlin.de/∼ag-gross
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tained critical temperatures in Section 7, and we summa-
rize in Section 8.

2 SCDFT gap equation

In this section, we wish to guide the reader, step by step,
to the gap equation which will be solved at the end of
this work to calculate the critical temperatures. We start
by bringing the foundations of the SCDFT [4] and the
main approximations, such as a decoupling of the band
energies and the superconducting gap and a linearization
of the gap equation close to Tc, which were assumed for
the numerical convenience [12–15]. We believe that these
approximations do not cause any significant difference in
the calculated critical temperatures.

Turning to the details of the SCDFT, in order to obtain
the gap equation one needs to follow the steps below:

1. The grand-canonical Hamiltonian for a superconductor
reads

Ĥv,∆ =
∑

σ

∫
d3r ψ̂†

σ(r)
[
−∇2

2
+ v(r) − µ

]
ψ̂σ(r)

+
1
2

∫
d3r d3r′ ψ̂†

σ(r)ψ̂†
σ(r′)

1
|r− r′| ψ̂σ(r′)ψ̂σ(r)

−
∫
d3r1 d

3r′1 d
3r2 d

3r′2 ψ̂
†
↓(r

′
1)ψ̂

†
↑(r1)

× w(r′1, r1, r2, r′2) ψ̂↑(r2)ψ̂↓(r′2)

−
[∫

d3r d3r′ ∆∗(r, r′) ψ̂↑(r)ψ̂↓(r′) + h.c.
]
, (1)

where v(r) and ∆(r, r′) are the external potential and
the anomalous pair potential respectively. The pair-
ing interaction w in the particular BCS case satisfies
w(r′1, r1, r2, r′2) = w(r′1 − r1, r2 − r′2). The normal and
anomalous densities, n(r) and χ(r, r′), are defined as

n(r) =
∑

σ

〈ψ̂†
σ(r)ψ̂σ(r)〉, (2)

χ(r, r′) = 〈ψ̂↑(r)ψ̂↓(r′)〉. (3)

2. The Hohenberg-Kohn theorem for superconductors
says that, at each temperature θ = 1/β, the
normal and anomalous densities, n(r) and χ(r, r′),
determine uniquely the density operator ρ̂ =
e−βĤv,∆/Tre−βĤv,∆ which minimizes the thermody-
namic potential, Ωv,∆[ρ̂], given by

Ωv,∆[ρ̂] = Tr{ρ̂ Ĥv,∆ + θ ρ̂ lnρ̂}. (4)

3. Furthermore, the thermodynamic potential can be ex-
pressed in terms of the densities and the potentials
by involving an universal functional of the densities,
F [n, χ], as follows

Ωv,∆[n, χ] = F [n, χ] +
∫
d3r v(r)n(r)

−
∫
d3rd3r′[∆∗(r, r′)χ(r, r′) + h.c.]. (5)

4. The universal functional contains the exchange-
correlation (xc) free-energy functional, Fxc[n, χ], as be-
low

F [n, χ] = Ts[n, χ] − θ Ss[n, χ] − µ N

+
1
2

∫
d3r d3r′

n(r)n(r′)
|r − r′|

−
∫
d3r1 d

3r′1 d
3r2 d

3r′2 χ
∗(r1, r′1)

× w(r′1, r1, r2, r′2)χ
∗(r2, r′2) + Fxc[n, χ], (6)

where Ts[n, χ] and Ss[n, χ] are the kinetic energy and
the entropy of a noninteracting system with the nonin-
teracting potentials, vs and ∆s, such that the densities
n and χ are equal to those of the noninteracting sys-
tem. In the above formula, µ is the chemical potential.

5. The noninteracting grand-canonical Hamiltonian can
be written in terms of the noninteracting densities and
potentials as

Ĥs =
∑

σ

∫
d3r ψ̂†

σ(r)
[
−∇2

2
+ vs(r) − µ

]
ψ̂σ(r)

−
[∫

d3r d3r′ ∆∗
s(r, r

′)ψ̂↑(r)ψ̂↓(r′) + h.c.
]
. (7)

6. The diagonalization of the noninteracting Hamilto-
nian, Ĥs, using the Bogoliubov transformation leads
to the Kohn-Sham-Bogoliubov-de Gennes (KS-BdG)
equations
[
−∇2

2
+ vs(r) − µ

]
ui(r) +

∫
d3r′ ∆s(r, r′)vi(r′)

= Ei ui(r), (8)

−
[
−∇2

2
+ vs(r) − µ

]
vi(r) +

∫
d3r′ ∆∗

s(r, r
′)ui(r′)

= Ei vi(r), (9)

with vi(r) and ui(r) being the pair creation and ani-
hilation amplitudes respectively.

7. The noninteracting potentials, vs and ∆s, consist of
the external potentials, v0 and ∆0, and Hartree po-
tentials, and the exchange-correlation potentials, vxc

and ∆xc, as follows

vs[n, χ](r) = v0(r) +
∫
d3r′

n(r′)
|r − r′|

+vxc[n, χ](r), (10)

∆s[n, χ](r, r′) = ∆0(r, r′) +
∫
d3r′

χ(r, r′)
|r− r′|

+∆xc[n, χ](r, r′). (11)

The external pairing potential, ∆0, has been intro-
duced in order to break the symmetry. Thus, in the
calculations, we have ∆0(r, r′) −→ 0 in equation (11).

8. The exchange-correlation potentials, vxc and ∆xc,
are defined as the derivatives of the xc functional,
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Fxc[n, χ], with respect to the densities, n and χ, cor-
respondingly as below

vxc[n, χ](r) =
δFxc[n, χ]
δn(r)

, (12)

∆xc[n, χ](r, r′) = −δFxc[n, χ]
δχ∗(r, r′)

. (13)

9. The densities, n and χ, are defined as functions of the
amplitudes ui(r) and vi(r) as:

n(r) = 2
∑

i

[ |ui(r)|2fβ,i + |vi(r)|2(1 − fβ,i) ], (14)

χ(r, r′) =
∑

i

[ v∗i (r′)ui(r)(1 − fβ,i) − v∗i (r)ui(r′)fβ,i ],

(15)

with the Fermi distribution function fβ,i = 1 +
exp(βEi).

At this point, one could guess the densities, n and χ, and
find the potentials, vxc and ∆xc, and solve the KS-BdG
equations, and find new densities etc. Further for the prac-
tical reasons as we already mentioned at the begin of this
section, one can make two approximations which we will
discuss now.

10. The energy scales for the electronic energies and
the superconducting energy gap differ by orders of
magnitude. Therefore, the KS-BdG equations (8, 9),
can be decoupled into the Kohn-Sham equation and
the gap equation. This approximation was introduced
to the SCDFT in reference [15].

It holds within the decoupling approximation that:
(a) the amplitudes ui(r) and vi(r) can be written in a

form

ui(r) ≈ ui ϕi(r) ; vi(r) ≈ vi ϕi(r), (16)

(b) the eigenvalues in equations (8) and (9) are defined
by

Ei = ±
√
ξ2i + |∆i (17)

where ξi = εi − µ
(c) the coefficients ui and vi are given by

ui =
1√
2
sgn(Ei) eiφi

√
1 +

ξi
Ei
, (18)

vi =
1√
2

√
1 − ξi

Ei
, (19)

and the phase factor φi is defined by

eiφi =
∆i

|∆i| , (20)

(d) the matrix elements ∆i are defined as

∆i =
∫
d3r

∫
d3r′ ϕ∗

i (r)∆s(r, r′)ϕi(r′), (21)

(e) and the normal and anomalous densities read re-
spectively

n(r) =
∑

i

(
1 − ξi

Ei

)
tanh

(
βEi

2

)
|ϕi(r)|2, (22)

χ(r, r′) =
1
2

∑

i

∆i

Ei
tanh

(
βEi

2

)
ϕi(r)ϕi(r′). (23)

11. The decoupling of the two energy scales yields a trans-
formation of the KS-BdG equations into the ordinary
Kohn-Sham equation

−
[∇2

2
+ vs[n, χ](r) − µ

]
ϕi(r) = εi ϕi(r), (24)

and the gap equation

∆i = ∆Hxc,i[µ,∆i]. (25)

The equation (25) stems from including equations (22)
and (23) into equation (11), and using in equation (21)
the potential given by formula (11).

12. In vicinity of Tc, the gap function is vanishing, there-
fore, it can be linearized in ∆i.

The above twelve steps lead to the gap equation which
can be expressed in the form

∆i = −1
2

∑

j

MHxc,ij [µ]
tanh(β

2 ξj)
ξj

∆j , (26)

MHxc,ij [µ] = −δ∆Hxc,i

δχj
, (27)

where ∆Hxc,i is defined by equation (13).
In other way, equation (27) can be written as

∆i = −Zi[µ]∆i − 1
2

∑

j

Kij [µ]
tanh(β

2 ξj)
ξj

∆j . (28)

Kij and Zi are the functionals only of the chemical poten-
tial in the case when the gap equation is linearized. The
above gap equation will be solved later in this work. The
explicit form of the kernel Kij and the norm Zi will be
given in Section 6.

Since the gap function (25) contains the exchange-
correlation part defined by equation (13), we will focus on
the construction of the exchange-correlation free-energy
functional, Fxc, in the following section.

3 Exchange-correlation functional, Fxc[n, χ]

The derivation of the exchange-correlation energy, Fxc,
by making use of the perturbative expansion of the ther-
modynamic potential, was given in reference [12]. For the
purpose of inclusion the spin interactions, we will briefly
draw a skeleton of this derivation here.
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First, one can notice from equations (5) and (6) that

Fxc = Ω −Ωs +
∫
d3r [vH(r) + vxc(r)]n(r)

−
∫
d3r d3r′ [∆∗

xc(r, r
′)χ(r, r′) +∆xc(r, r′)χ∗(r, r′)]

− 1
2

∫
d3r d3r′

n(r)n(r′)
|r− r′| · (29)

Then, one takes the coupling constant integration formula
which reads

Ω −Ωs =
∫ 1

0

dλ

λ
〈λĤ1〉, (30)

where λ is the coupling constant, and the perturbation
Hamiltonian Ĥ1 satisfies Ĥ = Ĥs + λĤ1 with the inter-
acting and noninteracting Hamiltonians, Ĥ and Ĥs, re-
spectively. The Hamiltonian Ĥ1 contains the difference
between the exact Coulomb interaction and the exchange-
correlation potentials, the electron-phonon interaction,
the electron-paramagnon interaction, etc.
The average in equation (30) has to be taken with the
density operator ρ̂λ = e−βHλ/Zλ.

Before an explicit evaluation of the coupling constant
integration formula (30), we write here a definition of the
Nambu Green’s function

Ḡσσ′ (rτ, r′τ ′) =
(
Gσσ′ (rτ, r′τ ′) Fσ−σ′ (rτ, r′τ ′)
F †
−σσ′ (rτ, r′τ ′) −G−σ′−σ(r′τ ′, rτ)

)
, (31)

which is a 2×2-matrix of the normal and anomalous single
particle Green’s functions, Gσσ′ and Fσσ′ , given respec-
tively by

Gσσ′ (rτ, r′τ ′) = −〈T̂ ψ̂σ(rτ)ψ̂†
σ′ (r′τ ′)〉, (32)

Fσσ′ (rτ, r′τ ′) = −〈T̂ ψ̂σ(rτ)ψ̂σ′ (r′τ ′)〉, (33)

F †
σσ′ (rτ, r′τ ′) = −〈T̂ ψ̂†

σ(rτ)ψ̂†
σ′ (r′τ ′)〉. (34)

The detailed derivation of 〈Ĥ1〉 is given in refer-
ences [12–14]. This derivation starts from the equations
of motion for the field operator, ψ̂σ, and for the noninter-
acting Green’s function, Ḡs

σσ′ , which are as follows

∂

∂τ
ψ̂σ(rτ) = eĤτ [Ĥ, ψ̂σ(r)] e−Ĥτ , (35)

L̂ Ḡs
σσ′ (rτ, r′τ ′) = −δσσ′ δ(r − r′) δ(τ − τ ′), (36)

with the Kohn-Sham Hamiltonian for the normal state,
ĥs, and the operator L̂ given respectively by

ĥs(r) = −∇2

2
+ vs(r) − µ, (37)

L̂ =

(
∂
∂τ + ĥs(r) ∆̂s(r)

∆̂∗
s(r)

∂
∂τ − ĥs(r)

)
. (38)

The operator ∆̂s(r) is defined as

∆̂s(r) f(r) =
∫
d3r′ ∆̂s(r, r′)f(r′). (39)

In order to complete the derivation, one also needs to make
use of the Dyson’s equation

Ḡσ′σ(rτ, r′τ ′) = Ḡs
σ′σ(rτ, r′τ ′)

+
∑

σσ′

∫
d3r1 d

3r2

∫
dτ1 dτ2 Ḡ

s
σσ1

(rτ, r1τ1)

× Σ̄(r1τ1, r2τ2) Ḡσ2σ′(r2τ2, r′τ ′), (40)

with Σ̄ being the selfenergy.

The above building blocks make us to arrive, after
some algebra, at the relation

Ω −Ωs =
1
2

∫ 1

0

dλ

λ

{
∑

σσ′

∫
d3r d3r′

×
∫
dτ ′ [Σ̄λ

σσ′ (rτ, r′τ ′)Ḡλ
σ′σ(r′τ ′, rτ+)]11

− λ

∫
d3r [vH(r) + vxc(r)] nλ(r)

+ 2λ
∫
d3r d3r′ ∆∗

xc(r, r
′)χλ(r, r′)

}
, (41)

which we can plug into the equation (29) for the
exchange-correlation functional, Fxc[n, χ].

As for the first-order selfenergy, Σ̄σσ′ , for the nonmag-
netic systems with the potential v(rτ, r′τ ′), this energy is
defined as

Σ̄(rτ, r′τ ′) = −v(rτ, r′τ ′) τ3Ḡ(rτ, r′τ ′)τ3, (42)

and τ3 is one of the Pauli matrices:

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 i
−i 0

)
,

τ3 =
(

1 0
0 −1

)
, τ0 =

(
1 0
0 1

)
.

For the magnetic systems, the matrix τ3 in the each
vertex of Feynman diagrams for the selfenergy with the
Coulomb and phonon interactions has to be replaced with
the matrix τ0τ3.

In this section, we sketched main steps to be done for
finding a general form of the Fxc[n, χ] functional for a
superconductor. The final formula involves the selfenergy
which will be evaluated in detail for the Coulomb and
electron-phonon interactions in the next section and for
the paramagnons in Section 5.

4 Coulomb and electron-phonon interactions
in Fxc[n, χ]

The derivation of Fxc for the Coulomb and phonon in-
teractions is given in detail in references [5,13]. Here, we
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report this derivation starting with the interactions in the
selfenergy (in Eq. (42)) defined by

vel(r, r′) =
1

|r − r′| , (43)

vph(rτ, r′τ ′) = Vλq(r)Dλq(τ − τ ′)Vλq(r′), (44)

where Vλq is the electron-phonon interaction vertex and
Dλq is the phonon Green’s function defined as

Dλq(τ, τ ′) = 〈T̂ Φ̂λq(τ)Φ̂†
λq(τ ′)〉, (45)

with Φ̂λq = bλ,q + b†λ,−q, and b†λ,q (bλ,q) being the phonon
creation (anihilation) operators.

Let us have a look now at the expression (29) for Fxc

and the definitions of the Nambu Green’s function and the
selfenergy given by equations (31) and (42) respectively.
The (1,1)-element of the (Σ̄Ḡ)-matrix, present in the for-
mula (41) and entering equation (29), is proportional to

G↑↑G↑↑ − F↑↓F
†
↑↓ = G↑↑G↑↑ + F↑↓F

†
↓↑ (46)

and the corresponding terms with the opposite spins.
The above terms appear in both the Coulomb and
electron-phonon interactions, and later will lead to the
opposite signums in the kernel Kij and the norm Zi in
the gap equation. Just mentioned difference in signum, in
the first order terms of the total energy with the normal
and anomalous Green’s functions, stems from the factor
of (-1) which one has to associate with the each loop of
anomalous Green’s functions.

In order to evaluate further Fxc, we bring here the ex-
plicit expressions for the noninteracting propagators. The
formulas given below were derived from the definitions
(32–34) assuming the decoupling approximation, i.e. equa-
tions (16); the Kohn-Sham orbitals ϕk(r) were chosen to
those of a homogeneous gas (wn are the odd Matsubara
frequencies)

Gs
σσ′ (k, wn) = δσ,σ′

×
[ |uk|2
iωn − Ek

+
|vk|2

iωn + Ek

]
, (47)

F s
σσ′ (k;wn) = δσ,−σ′ sgn(σ′)

× ukv
∗
k

(
1

iωn + Ek
− 1
iωn − Ek

)
, (48)

F s†
σσ′ (k;wn) = δσ,−σ′ sgn(σ)

× u∗kvk

(
1

iωn + Ek
− 1
iωn − Ek

)
. (49)

Now, we will combine equations (29) and (41), for the
Fxc and Ω − Ωs respectively, with the definition of the
Nambu Green’s function, equation (31), and the expres-
sion for the selfenergy, equation (42). As for the noninter-
acting Green’s functions, we use those obtained within the

decoupling approximation, i.e. (47–49). This way, one ar-
rives to the formulas for the xc energy, stemming from the
normal and anomalous loops. The “normal” and “anoma-
lous” terms of Fxc for the electronic contributions, F el,1

xc
and F el,2

xc , are as follows

F el,1
xc = −1

4

∑

kk′

(
1 − ξk

Ek

)
v(k,k′)

(
1 − ξk′

Ek′

)

× tanh
(
β

2
Ek

)
tanh

(
β

2
Ek′

)
, (50)

F el,2
xc =

1
4

∑

kk′
v(k,k′)

∆k

Ek

∆k′

Ek′

× tanh
(
β

2
Ek

)
tanh

(
β

2
Ek′

)
. (51)

The electron-phonon terms, with the normal and anoma-
lous loops, F ph,1

xc and F ph,2
xc , respectively are given below

F ph,1
xc = −1

2

∑

kk′

∫
dΩ α2F (Ω)

×
[(

1 +
ξkξk′

EkEk′

)
I(Ek, Ek′ , Ω)

+
(

1 − ξkξk′

EkEk′

)
I(Ek,−Ek′ , Ω)

]
, (52)

F ph,2
xc =

1
2

∑

kk′

∫
dΩ α2F (Ω)

∆k∆
∗
k′

EkEk′

× [I(Ek, Ek′ , Ω) − I(Ek,−Ek′ , Ω)]. (53)

The function I(Ek, Ek′ , Ω) is defined as

I(Ek, Ek′ , Ω) =
1
β2

∑

ω1ω2

1
iω1 − Ek

1
iω2 − Ek′

× −2Ω
(ω1 − ω2)2 +Ω2

· (54)

For the completeness, we give the definitions:

v(k,k′) =
∫
d3r d3r′ ϕ∗

k(r)ϕk(r′)

× 1
|r − r′| ϕ

∗
k′(r)ϕk′(r′), (55)

gλq
k,k+q =

∫
d3r ϕ∗

k(r) Vλq ϕk+q(r), (56)

α2F (Ω) =
1

N(εF )

∑

λq

∑

k

|gλq
k,k+q|2 δ(Ω − ωλq)

× δ(εk − εF ) δ(εk+q − εF ), (57)

where ωλq is the phonon frequency and N(εF ) is the
density of states.

Using the formulas (50–54), one is ready to derive the
exchange-correlation potential defined by equation (13).
This derivation can be performed with the help of the
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chain rule as follows

∆xc,i = −δFxc

δµ

δµ

δχ∗
i

−
∑

j

[
δFxc

δ|∆j |2
δ|∆j |2
δχ∗

i

+
δFxc

δ(φj)
δ(φj)
δχ∗

i

]
. (58)

Further evaluation of the above expression is given in de-
tail in references [5,12]. In this work, we give the final for-
mula for∆xc,i which involves the phonon and paramagnon
spectral functions and can be implemented in a straight-
forward way. We will give the details of implementation
in Section 6.

At this point, we arrived to the explicit expressions
for Fxc with the electronic and phononic parameters such
as: the chemical potential µ, the density of states N(εF ),
the single particle energies εk, and the Eliashberg function
α2F (Ω). Now, we are ready to introduce the spin fluctua-
tions into the discussed formalism, and we will do this in
the following section.

5 Paramagnons in Fxc[n, χ]

We will introduce the transverse spin-fluctuations to the
total energy within the SCDFT. For the simplicity, we will
assume the singlet pairing and the s-wave symmetry of the
gap function. An extension to the triplet superconductors
could be done following the work by Capelle et al. [16,20].
In the case of magnetic superconductors, one should take
also into account a correction for the Zeeman effect, i.e.
the spin gap. As for the pairing potentials with the higher
angular-momentum, one cannot average spherically the
angular part of the interaction in the RPA formula for the
paramagnon susceptibility. The aforementioned formula
will be used later in this section.

Here, we start with the Nambu Green’s function for
the superconductors with magnetic interactions included
into the description. This matrix is now 4×4 dimensional
and reads

Ḡ(rτ, r′τ ′) = −〈T̂ Ψ̂ †(r, τ) ⊗ Ψ̂(r′, τ ′)〉, (59)

with the 4-component field operators (the notation has
been chosen according to Maki in Ref. [18] and x denotes
the vector (r,τ))

Ψ̂(x) =

⎛

⎜⎜⎜⎝

ψ̂↑(x)
ψ̂↓(x)
ψ̂†
↑(x)
ψ̂†
↓(x)

⎞

⎟⎟⎟⎠ , Ψ̂ †(x) =
(
ψ̂†
↑(x)ψ̂

†
↓(x)ψ̂↑(x)ψ̂↓(x)

)
.

(60)

The first-order selfenergy with the spin dependent inter-
action vµν , where µ and ν denote the Cartesian compo-
nents of the spin orientations of two interacting electrons,
is given by

Σ̄(rτ, r′τ ′) = −vµν(rτ, r′τ ′) α̂µḠ(rτ, r′τ ′)α̂ν , (61)
vµν(rτ, r′τ ′) = Iex(r)Dµν(τ − τ ′)Iex(r′). (62)

The quantity Iex is the spin exchange interaction, andDµν

is the spin Green’s function. The matrix α̂µ is defined as

α̂µ =
(
σµ 0
0 −σtr

µ

)
, (63)

where σtr
µ denotes the matrix transposed to the Pauli

matrix σµ (see Ref. [19]).

For the transverse spin fluctuations, the α-matrix,
given by formula (63), involves the Pauli matrices σ+ and
σ− defined as σ± = 1

2 (σx ± iσy); explicitly

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

Evaluation of the selfenergy with paramagnons, accord-
ing to equations (61–63), yields a very sparse 4×4-matrix
which reads

Σ̄(rτ, r′τ ′) = −v+−(rτ, r′τ ′)

×

⎛

⎜⎜⎝

G↓↓(rτ, r′τ ′) 0 0 −F↓↑(rτ, r′τ ′)
0 0 0 0
0 0 0 0

−F †
↑↓(rτ, r

′τ ′) 0 0 G†
↑↑(rτ, r

′τ ′)

⎞

⎟⎟⎠ , (64)

where G†
↑↑ = −G↑↑.

Now, let us go back to the previous section and look
again at the (1,1)-element of the (Σ̄Ḡ)-matrix. We see
that for the Coulomb and electron-phonon interactions,
the total energy is proportional to the expression (46). For
the magnetic interactions, however, the Nambu Green’s
function is defined by equation (59) and the selfenergy
is given by equation (64), therefore, the total energy is
proportional to

G↓↓G↑↑ − F↓↑F
†
↑↓ = G↓↓G↑↑ − F↑↓F

†
↓↑. (65)

The above expression differs from relation (46) by
signum in front of the anomalous Green’s functions. This
difference will show up in the kernel Kij and the norm
Zi. The phonon and paramagnon spectral functions enter
the kernel with different signum (originating from the
anomalous loop of Green’s functions) and the norm with
the same signum (originating from the normal loop).

To proceed further with the evaluation of the xc-
free energy, Fxc, we write explicitly the spin-fluctuation
Green’s function, Dµν(τ − τ ′), used in equation (62). In
the case of paramagnons, Dµν(τ − τ ′) is the transverse
spin susceptibility, χ+−, defined as

χ+−(r − r′, τ − τ ′) = 〈T̂ Ŝ−(r, τ)Ŝ+(r′, τ ′)〉, (66)

with the operators increasing and lowering spin which are
defined respectively as

Ŝ+(r, τ) = ψ̂†
↑(r, τ)ψ̂↓(r, τ), (67)

Ŝ−(r, τ) = ψ̂†
↓(r, τ)ψ̂↑(r, τ). (68)
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For the conduction band, we can use a model of the ho-
mogeneous electron gas with the fluctuations treated on
the level of the random phase approximation. The Fourier
transform of the RPA-“dressed” paramagnon propaga-
tor is

χ+−(q, νn) =
χ0(q, νn)

1 − Iexχ0(q, νn)
, (69)

with the Pauli susceptibility χ0 and the even Matsubara
frequencies νn.

It is convenient to introduce the spectral representa-
tion

χ+−(q, νn) = −
∫ ∞

0

dΩ

π
D0(Ω, νn) �m χ+−(q, Ω),

(70)

D0(Ω, νn) =
−2Ω

ν2
n +Ω2

, (71)

and the momentum averaged paramagnon spectral func-
tion

P (Ω) = N(εF )
∫ 2kF

0

dq
q

2k 2
F

× |I(q)|2
[
− 1
π
�m χ+−(q,Ω)

]
. (72)

We assume that the interaction function, I(q), is the mo-
mentum independent quantity, Iex, which can be calcu-
lated in a way given for instance in reference [10].

Therefore, for the systems with the electron-
paramagnon interactions, the exchange-correlation free
energy is given by

F sf,1
xc = −1

2

∑

kk′

∫
dΩ P (Ω)

×
[(

1 +
ξkξk′

EkEk′

)
I(Ek, Ek′ , Ω)

+
(

1 − ξkξk′

EkEk′

)
I(Ek,−Ek′ , Ω)

]
, (73)

F sf,2
xc = −1

2

∑

kk′

∫
dΩ P (Ω)

∆k∆
∗
k′

EkEk′

× [I(Ek, Ek′ , Ω) − I(Ek,−Ek′ , Ω)], (74)

where the function I(Ek, Ek′ , Ω) is defined by equa-
tion (54). The explicit formula for the paramagnon spec-
tral function, P (Ω), within the RPA is given for instance
in references [8,10,19].

6 Gap equation with paramagnons
and implementation details

At this point, we have completed the derivation of all
components of the exchange-correlation free energy: the
Coulomb part — equations (50, 51), the phonon part —

equations (52, 53), and the spin-fluctuation part — equa-
tions (73, 74). Now, we can write explicitly the gap equa-
tion given by equations (26–28).

The Mij-matrix of the linearized equation (26) is the
following function of the kernel Kij and the norm Zi

Mij = −1
2

Kij [∆ = 0]
1 − Zi [∆ = 0]

. (75)

The nondiagonal part of the Mij-matrix is given by

Kij = Kel
ij +Kph+sf

ij , (76)

where the electronic part is defined by

Kel
ij = wij , (77)

wij =
2π
kikj

log
(

(ki + kj)2 + k2
TF

(ki − kj)2 + k2
TF

)
. (78)

The Coulomb interaction wij has been spherically aver-
aged over the angular coordinates since, as we said before,
we assumed the s-wave pairing. The electron correlations
are taken into account by the Thomas-Fermi screening
constant, kTF , and ki is an absolute value of the recipro-
cal vector.

The electron-phonon and electron-paramagnon inter-
action nondiagonal part of the Mij-matrix is given by

Kph+sf
ij =

2
tanh(βξi/2)tanh(βξj/2)

×
∫
dΩ

[
α2F (Ω) − P (Ω)

]

× [I(ξi, ξj , Ω) − I(ξi,−ξj, Ω)] . (79)

The diagonal part of the Mij-matrix is

Zi = Zel
i + Zph+sf

i , (80)

where the purely electronic part is

Zel
i = − 1

2ξi

⎧
⎨

⎩
∑

j

wij [1 − tanh(βξj/2)]

−
∑

jk
βwjk/2

cosh2(βξj/2)
[1 − tanh(βξk/2)]

∑
k

β/2
cosh2(βξk/2)

⎫
⎬

⎭ , (81)

and the phononic and paramagnon part is

Zph+sf
i =

−4π
tanh(βξi/2)

1
β

∫
dΩ

[
α2F (Ω) + P (Ω)

]

×
∑

ω2

ω2 sgn(ω2)
[
Zph+sf

i,sym + Zph+sf
i,asym

]
, (82)

Zph+sf
i,sym = [nβ(Ω) + fβ(−ξi)] 2(ξi +Ω)

[ω2
2 + (ξi +Ω)2]2

+ [nβ(Ω) + fβ(ξi)]
2(ξi −Ω)

[ω2
2 + (ξi −Ω)2]2

. (83)
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Functions fβ and nβ are the Fermi-Dirac and Bose-
Einstein distribution functions respectively.

For the electronic part of the norm, i.e. Zel
i , we

used the zero temperature approximation given in refer-
ences [10,14]. This approximation can be justified by the
fact that the critical temperatures of simple metals, which
we calculate in this work, are very low. The above simpli-
fication is done for a sake of the numerical convenience
since there are many singularities in the formula (81).

The subscripts “sym” and “asym” mean the symmet-
ric and antisymmetric part of Zi with respect to the
electron-phonon coupling elements gk,k+q. The electron-
paramagnon interaction constant, I(q), has been also av-
eraged in q leading to Iex. The antisymmetric part Zph+sf

i,asym
is omitted in our calculations according to the reasons dis-
cussed in references [5,14] and in our previous work [10].
Therefore, we do not give the expression for Zph+sf

i,asym in
this work.

7 Critical temperatures of simple metals

In the following two subsections, we report the critical
temperatures obtained by solving the SCDFT gap equa-
tion with the spin fluctuations included. We compare these
results with the results without the spin fluctuations and
results from the Eliashberg theory. First, we calculate pa-
rameters of the gap equation for several simple metals: V,
Mo, Ta, and Pd (fcc and bcc) at ambient pressure. At the
end, we complete our previous results for Nb under pres-
sure [10] reporting Tc obtained within the SCDFT with
the paramagnons included.

The electronic structures, the densities of states (DOS)
and the electron-phonon coupling constants and the
phonon and magnon spectral functions for studied met-
als were calculated within the local density approxima-
tion (LDA). We used the pseudopotential plane wave
codes pwscf [21] and espresso [22]. The phonons and
electron-phonon couplings were obtained from the den-
sity functional perturbation theory (DFPT) [23]. Since
the calculation of the spectral function α2F is very time
consuming, we used the ultrasoft pseudopotentials (US
PPs) [24]. The kinetic energy cut-offs for the wavefunc-
tions and densities were 45 Ry and 270 Ry respectively in
order to reproduce well all features of the phonon dis-
persions especially for the low frequency phonons (see
Ref. [10]). The metallic broadening at the Fermi en-
ergy [25] was assumed at 0.03 Ry. We used the Monkhorst-
Pack mesh [26] of (64,64,64)-points for the DOS calcu-
lations. The mesh of (16,16,16)-points was used for the
self-consistent calculation of the electron-phonon-coupling
matrix elements for the each phonon, the mesh of (8,8,8)-
points was assumed to fit the phonon dispersions. We fit
from (16,16,16) into (64,64,64) mesh-points to perform the
integrands with the double-delta function present in the
definition of the electron-phonon coupling constant, λph,
and the spectral function, α2F (ω).

The spin-exchange interaction constants, Iex, for met-
als at ambient pressure were taken from the work by Sin-

galas et al. [27]. Further, we used the aforementioned pa-
rameters for the calculation of the spectral function, P (ω),
and the electron-paramagnon coupling constant, λsf . For
niobium under pressure, we used Iex and P (ω) calculated
in our previous work [10].

All electronic parameters and the phonon and magnon
spectral functions were assumed to be the same for the
normal and superconducting state. The accuracy of func-
tions α2F (ω) and P (ω) is very important for an ex-
act estimation of the critical temperature. The electron-
phonon spectral function is very time consuming for the
calculations. The function α2F contains all the specific
information about the studied system. In contrast, the
approximation which we used for the paramagnon spec-
tral function, P (ω), to avoid calculation of this quantity
from the time-dependent density functional theory, is in-
sufficient. We made the assumption of the homogeneous
electron gas for the spin susceptibility. The only spin-
dependent quantity which we calculated specifically for
a given metal was the exchange constant. The calculation
of this constant, i.e. Iex, is very difficult. Obtained results
have a large error due to their very small values and ne-
cessity to calculate the response function to very small
magnetizations applied to the system. Therefore, as we
will see below, the obtained critical temperatures are not
always very close to the experimental ones. Further devel-
opment should be directed into more accurate calculation
of the spectral functions, especially P (ω).

7.1 Transition metals at ambient pressure

In Table 1, we report the critical temperatures and param-
eters which enter the gap equation calculated by means of
the Eliashberg theory and the SCDFT for a few simple
metals: vanadium, molybdenum and tantalum in bcc lat-
tice structure and palladium in fcc and bcc structures. Our
calculated densities of states, N(εF ), and the electron-
phonon coupling constants, λph, are in a good agreement
with the previous calculations by Savrasov et al. [28].
The Eliashberg functions calculated within the DFPT are
presented in Figure 1. The Coulomb parameter, µ∗, was
obtained from the Benneman-Garland formula [10,29],
which employs the density of states. The spin exchange
constant, Iex, taken from reference [27], has been used to
obtain the paramagnon spectral function, P (ω), which we
draw in Figure 2.

As for the critical temperatures, for tantalum, the
SCDFT result is in a very small relative error, defined in
Table 1, of 3% with respect to the experimental data [30].
While, the Eliashberg result with the spin fluctuations in-
cluded is in the error of 81%. For molybdenum, Tc from the
Eliashberg gap equation is smaller than the experimental
one, even without the paramagnon effect. But the absolute
error of all calculated temperatures for Mo is smaller than
1 K. Palladium in both structures fcc and bcc is nonsuper-
conducting and the SCDFT reproduces well this result. In
contrast to the SCDFT result, from the Eliashberg theory
we obtained superconductivity with a very small Tc for
Pd in the bcc structure.
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Table 1. Various parameters such as: crystal symmetry, density of states N(εF ) per Ry and per both spins, coupling constants
Iex [Ry/both spins], electron-phonon λph, electron-paramagnon λsf , and Tc [K] calculated from the Eliashberg theory and the
SCDFT with the Coulomb and phonon interactions only (ep) and with spin fluctuations (epsf), the experimental T exp

c (from
Ref. [30]), and the “error” defined as (T epsf

c − T exp
c )/T exp

c [%] with T epsf
c calculated within the SCDFT.

Eliashberg SCDFT

system N(εF ) Iex λph λsf µ∗ T ep
c T epsf

c T ep
c T epsf

c ∼ T exp
c “error”

V bcc 24.98 (26.14a) 0.0218b 0.91 (1.19a) 0.430c 0.212 9.0 5.9 16.1 7.4 5.38 38

Mo bcc 8.81 (8.34a) 0.0184b 0.47 (0.42a) 0.024c 0.198 0.8 0.7 1.5 1.4 0.92 52

Ta bcc 18.60 (18.38a) 0.0162b 0.97 (0.86a) 0.096c 0.209 8.7 8.1 5.9 4.6 4.48 3

Pd fcc 30.68 (34.14a) 0.0230b 0.35 (0.35a) 0.972c 0.213 0.01 - – – - -

Pd bcc 16.60 (18.49b) 0.0229b 0.68 (--) 0.167c 0.208 1.3 0.8 – – - -

a Values from reference [28].
b Values from reference [27].
c Calculated with Iex from reference [27].
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Fig. 1. The Eliashberg functions of V, Mo, Ta in bcc structure
and Pd in both bcc and fcc structures.
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Fig. 2. The paramagnon spectral functions of V, Mo, Ta in
bcc structure and Pd in both bcc and fcc structures.

Usually, the critical temperatures from the SCDFT are
lower than temperatures from the Eliashberg theory. In
some cases, however, the SCDFT temperatures are higher.
This situation is for vanadium and molybdenum. Espe-
cially for vanadium, Tc from the SCDFT gap equation
is about 2 K higher than the experimental data [30],
even after inclusion of the spin fluctuations. This fact
may indicate that, either the spin exchange constant, Iex,
was underestimated, or a contribution of the asymmetric
part of the phononic term in the SCDFT gap equation
is quite large. As we know from results reported in ref-
erences [5,10], if we neglect the asymmetric part in the
electron-phonon-coupling matrix elements by taking the
α2F (ω) averaged at the Fermi level, the critical temper-
atures are higher (see the discussion in Sect. 6). The last
approximation, however, must be done if we do not eval-
uate formulas with the gk,k+q elements explicitly.

In general, the critical temperatures obtained from the
SCDFT are in a good agreement with the measured tem-
peratures [30], and the effect of paramagnons improves the
result considerable for many simple metals.

7.2 Niobium under pressure

In Table 2, we present the critical temperatures and the
parameters of the gap equation for niobium at eight pres-
sures in the range from –17 GPa up to 80 GPa. The spin
exchange constants, Iex, have been calculated from first
principles in reference [10], and the electron-phonon and
electron-magnon spectral functions for Nb have been pre-
sented also in that work.

Here, we complete our previous results by report-
ing the effect of paramagnons on Tc calculated from the
SCDFT. After the inclusion of the spin fluctuations, the
critical temperatures obtained from the SCDFT are closer
to the experimental Tc’s for pressures in the range of
0–40 GPa, i.e. pressures between the two anomalies mea-
sured by Struzhkin et al. [11]. The dependence of the
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Table 2. Results for Nb; applied pressure p [GPa], density of states N(εF ) per Ry and per both spins, spin exchange integral Iex

[Ry/both spins] (from Ref. [10]), coupling constants: electron-phonon λph, electron-paramagnon λsf , and Tc [K] calculated from
the Eliashberg theory (with µ∗=0.21) and SCDFT with Coulomb and phonon interactions only (ep) and with spin fluctuations
(epsf). The experimental T exp

c has been estimated from the picture given in reference [11]. Last column shows the “error” of
the SCDFT calculations for T epsf

c defined in Table 1.

Eliashberg SCDFT

p N(εF ) Iex λph λsf T ep
c T epsf

c T ep
c T epsf

c ∼ T exp
c “error”

–16.59 22.82 0.0211 1.91 0.28 20.3 16.7 14.4 6.2 - -

–9.45 21.60 0.0213 1.60 0.25 19.5 15.5 13.2 6.4 - -

–0.63 20.24 0.0217 1.41 0.22 18.8 14.7 12.9 7.2 9.2 -22

9.98 19.38 0.0204 1.65 0.17 19.6 15.8 13.4 9.8 10.0 -2

22.89 18.32 0.0189 1.47 0.13 19.4 16.0 13.2 11.3 9.8 15

38.79 17.10 0.0228 1.29 0.16 18.4 14.1 12.0 10.1 9.7 4

56.73 15.42 0.0292 1.10 0.23 16.1 10.7 10.1 8.4 9.5 –12

78.37 13.10 0.0347 0.86 0.24 13.7 7.3 8.2 7.9 8.8 –10

measured critical temperature as a function of pressure
is no longer reproduced by our calculations when we take
into account paramagnons. At ambient pressure and for
higher pressures, paramagnons seem to make the theoret-
ical result worse. The above effect, could be explained by
making the observation that, in every case where the ex-
change constant Iex is large, the theoretical temperature
underestimates the measured temperature, and vice versa,
for the smallest Iex the critical temperature obtained from
the SCDFT is the highest and the error is positive.

Concluding this section, the implementation of para-
magnons to the SCDFT generally makes the calculated
critical temperatures closer to the experimental ones. But
our calculated exchange constants, Iex, are not sufficiently
accurate. This fact gives a direction for the future devel-
opment.

8 Summary

In the present work, we included the transverse spin fluc-
tuations to the density functional theory for supercon-
ductors. The SCDFT is presented from its foundations,
through the decoupling approximation, the gap equation
and the details of the implementation. We assumed the
singlet and the s-wave pairing potential; The extension
to the triplet superconductors could be done following
the work by Capelle et al. [16,20]. The electron-phonon
couplings and the electron-paramagnon couplings were
averaged at the Fermi energy, therefore the asymmet-
ric part of the functional with respect to the electron-
phonon matrix elements and to the spin-exchange inter-
action constants were omitted. Through the whole work,
we kept the notation to be consistent with Parks [17,18]
and Vonsovsky [19].

Paramagnons and phonons in the superconducting
state were assumed to be the same like in the normal

state. The Eliashberg spectral function has been calcu-
lated within the density functional perturbation theory
and it is fully material specific. Paramagnons, in contrast,
have been obtained from the random phase approxima-
tion for the homogeneous electron gas and only the spin
exchange constants were calculated from the electronic
structure.

We reported the critical temperatures obtained from
the SCDFT and the Eliashberg linearized gap equation
with and without spin fluctuations for a few simple met-
als: V, Mo, Ta, Pd at ambient pressure and Nb at several
pressures up to 80 GPa. Some discrepancies between the
temperatures calculated from the SCDFT and the mea-
sured temperatures are due to the fact that it is quite
difficult to obtain the accurate spin-exchange constants
and/or to the fact that the spectral functions have been
averaged at the Fermi level. Netherveless, the results show
that the inclusion of paramagnons improves the critical
temperatures obtained from both methods, the SCDFT
and the Eliashberg theory. The critical temperatures ob-
tained from the parameter-free SCDFT are in most cases
closer to the experimental data than the results obtained
from the Eliashberg theory.
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